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	Answer all the questions.
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 

find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 

to show all working.

1. [Maximum mark:  8]

 Let  R  be a relation on the set   such that aRb ab⇔ ≥ 0 , for a b, ∈ .

 (a) Determine whether  R  is

	 	 (i)	 reflexive;

	 	 (ii)	 symmetric;

	 	 (iii)	 transitive. [7 marks]

 (b) Write down with a reason whether or not  R 	is	an	equivalence	relation. [1 mark]

2. [Maximum mark:  16]

 (a) Let f :  × → , f m x xm( , ) ( )= −1 .  Determine whether  f  is

	 	 (i)	 surjective;

	 	 (ii)	 injective. [4 marks]

 (b) P  is the set of all polynomials such that P a x ni
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Let g P P: → , g p xp( ) = .  Determine whether  g  is

	 	 (i)	 surjective;

	 	 (ii)	 injective. [4 marks]

 (c) Let h : → + , h x
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2 0

1 2 0
.  Determine whether  h  is

	 	 (i)	 surjective;

	 	 (ii)	 injective. [7 marks]

	 (d)	 Write	down	which,	if	any,	of	the	above	functions	are	bijective. [1 mark]
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3. [Maximum mark:  8]

	 Prove	that	for	sets		A  and  B

A B C A B A C× ∩ = × ∩ ×( ) ( ) ( ) .

4. [Maximum mark:  20]

 Set S x x x x x x= { , , , , , }0 1 2 3 4 5  and a binary operation   on  S 	is	defined	as	 x x xi j k = , 

where i j k+ ≡ (mod )6 .

 (a) (i) Construct the Cayley table for { , }S   and hence show that it is a group.

  (ii) Show that { , }S   is cyclic. [11 marks]

 (b) Let { , *}G  be an Abelian group of order 6.  The element a G∈  has order 2 and 

the element b G∈  has order 3.

	 	 (i)	 Write	down	the	six	elements	of	{ , *}G .

  (ii) Find the order of a b*  and hence show that { , *}G  is isomorphic to { , }S  . [9 marks]

5. [Maximum mark:  8]

 Let { , *}G 	be	a	finite	group	that	contains	an	element		a  (that is not the identity element) 

and H a nn= ∈ +{ | } , where a a a2 = * , a a a a3 = * *  etc.

 Show that { , *}H  is a subgroup of { , *}G .


