

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Monday 15 November 2010 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

[4 marks]

[4 marks]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 8]

Let *R* be a relation on the set \mathbb{Z} such that $aRb \Leftrightarrow ab \ge 0$, for $a, b \in \mathbb{Z}$.

- (a) Determine whether R is
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive. [7 marks]
- (b) Write down with a reason whether or not *R* is an equivalence relation. [1 mark]

2. [Maximum mark: 16]

(a) Let
$$f: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$
, $f(m, x) = (-1)^m x$. Determine whether f is

- (i) surjective;
- (ii) injective.
- (b) *P* is the set of all polynomials such that $P = \left\{ \sum_{i=0}^{n} a_i x^i \mid n \in \mathbb{N} \right\}$. Let $g: P \to P$, g(p) = xp. Determine whether *g* is
 - (i) surjective;
 - (ii) injective.

(c) Let
$$h: \mathbb{Z} \to \mathbb{Z}^+$$
, $h(x) = \begin{cases} 2x, x > 0\\ 1 - 2x, x \le 0 \end{cases}$. Determine whether *h* is

- (i) surjective;
- (ii) injective. [7 marks]
- (d) Write down which, if any, of the above functions are bijective. [1 mark]

8810-7209

3. [Maximum mark: 8]

Prove that for sets A and B

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

4. [Maximum mark: 20]

Set $S = \{x_0, x_1, x_2, x_3, x_4, x_5\}$ and a binary operation \circ on S is defined as $x_i \circ x_j = x_k$, where $i + j \equiv k \pmod{6}$.

- (a) (i) Construct the Cayley table for $\{S, \circ\}$ and hence show that it is a group.
 - (ii) Show that $\{S, \circ\}$ is cyclic.

[11 marks]

- (b) Let $\{G, *\}$ be an Abelian group of order 6. The element $a \in G$ has order 2 and the element $b \in G$ has order 3.
 - (i) Write down the six elements of $\{G, *\}$.
 - (ii) Find the order of a * b and hence show that $\{G, *\}$ is isomorphic to $\{S, \circ\}$. [9 marks]

5. [Maximum mark: 8]

Let $\{G, *\}$ be a finite group that contains an element *a* (that is not the identity element) and $H = \{a^n \mid n \in \mathbb{Z}^+\}$, where $a^2 = a * a$, $a^3 = a * a * a$ etc.

Show that $\{H, *\}$ is a subgroup of $\{G, *\}$.